No Electron Left Behind: A Rule-Based Expert System To Predict Chemical Reactions and Reaction Mechanisms

نویسندگان

  • Jonathan H. Chen
  • Pierre Baldi
چکیده

Predicting the course and major products of arbitrary reactions is a fundamental problem in chemistry, one that chemists must address in a variety of tasks ranging from synthesis design to reaction discovery. Described here is an expert system to predict organic chemical reactions based on a knowledge base of over 1500 manually composed reaction transformation rules. Novel rule extensions are introduced to enable robust predictions and describe detailed reaction mechanisms at the level of electron flows in elementary reaction steps, ensuring that all reactions are properly balanced and atom-mapped. The core reaction prediction functionalities of this expert system are illustrated with applications including: (1) prediction of detailed reaction mechanisms; (2) computer-based learning in organic chemistry; (3) retrosynthetic analysis; and (4) combinatorial library design. Select applications are available via http://cdb.ics.uci.edu.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Machine Learning Approach to Predict Chemical Reactions

Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Previous approaches are not highthroughput, are not generalizable or scalable, or lack sufficient data to be effective. We describe single mechanistic reactions as concerted electron movements from an electron orbital source to an electron orbital sink. We use an ex...

متن کامل

RCARM: Reaction classification using automated reaction mapping

Detailed chemical kinetic modeling of gas-phase reactions can result in automatically generated mechanisms that contain thousands of reactions. In this paper, we describe the development of a rule-based expert system tool that organizes these reactions into classes such as hydrogen abstraction and beta scission. We have developed 29 simple classification rules, 20 complex (well-skipping) classi...

متن کامل

Learning to Predict Chemical Reactions

Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles, respectively, are not high throughput, are ...

متن کامل

Modelling Chemical Reasoning to Predict and Invent Reactions.

The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represe...

متن کامل

Development of an evolutionary fuzzy expert system for estimating future behavior of stock price

The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a “data mining-based evolutionary fuzzy expert system” (DEFE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 49 9  شماره 

صفحات  -

تاریخ انتشار 2009